Combinatorial Proof of a Curious $q$-Binomial Coefficient Identity
نویسندگان
چکیده
منابع مشابه
Combinatorial Proof of a Curious q-Binomial Coefficient Identity
q-binomial coefficient identity Victor J. W. Guo and Jiang Zeng Department of Mathematics, East China Normal University, Shanghai 200062, People’s Republic of China [email protected], http://math.ecnu.edu.cn/~jwguo Université de Lyon; Université Lyon 1; Institut Camille Jordan, UMR 5208 du CNRS; 43, boulevard du 11 novembre 1918, F-69622 Villeurbanne Cedex, France [email protected], ...
متن کاملA Combinatorial Proof of Sun's \Curious" Identity
A binomial coeÆcient identity due to Zhi-Wei Sun is the subject of half a dozen recent papers that prove it by various analytic techniques and establish a generalization. Here we give a simple proof that uses weight-reversing involutions on suitable con gurations involving dominos and colorings. With somewhat more work, the method extends to the generalization also. 0 Introduction The identity
متن کاملA curious binomial identity
In this note we shall prove the following curious identity of sums of powers of the partial sum of binomial coefficients.
متن کاملCombinatorial proofs of a kind of binomial and q-binomial coefficient identities
We give combinatorial proofs of some binomial and q-binomial identities in the literature, such as ∞ ∑ k=−∞ (−1)kq(9k2+3k)/2 [ 2n n + 3k ] = (1 + q) n−1 ∏ k=1 (1 + q + q) (n ≥ 1),
متن کاملA Combinatorial Proof of a Symmetric q-Pfaff-Saalschütz Identity
We give a bijective proof of a symmetric q-identity on 4φ3 series, which is a symmetric generalization of the famous q-Pfaff-Saalschütz identity. An elementary proof of this identity is also given.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Electronic Journal of Combinatorics
سال: 2010
ISSN: 1077-8926
DOI: 10.37236/462